H=-4.9t^2+96

Simple and best practice solution for H=-4.9t^2+96 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-4.9t^2+96 equation:



=-4.9H^2+96
We move all terms to the left:
-(-4.9H^2+96)=0
We get rid of parentheses
4.9H^2-96=0
a = 4.9; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·4.9·(-96)
Δ = 1881.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1881.6}}{2*4.9}=\frac{0-\sqrt{1881.6}}{9.8} =-\frac{\sqrt{}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1881.6}}{2*4.9}=\frac{0+\sqrt{1881.6}}{9.8} =\frac{\sqrt{}}{9.8} $

See similar equations:

| k-20=4-3k | | –3r=–4r+6 | | (-4.8y=20.1)-12.7y+9.3) | | y+60+58=180 | | 5c-4+3c=28 | | 5y+2=7y+9 | | 6y+4=55 | | 5-115+5x=30 | | X-5x=17 | | (3x+9)+(2x−4)=90 | | 3b+25=46 | | 10x+3=11x-4 | | 3x-1+4x+3+6x=0 | | -6n-20=-2+4-12n | | 128+(3x+2)=180 | | 125+c=2250 | | 4x=2=3x+5 | | 4x-5+x+6=0 | | 8/21•-7/2=-2/7x•-7/2 | | 28.00x+22.75=50.00x+17.25 | | 107d=1.733.4 | | 5x+5=-x-13 | | y+4.7=9.5 | | 28.00x+22.75=500 | | –4t−–20t+9t+–18=7 | | 3x+5x-4+2x+5=0 | | 3x+5x-4+2x+5=10 | | 1/3(27x+18)=51 | | x^+18x+17=0 | | 12.5=0.75(3x-4) | | 21=9n- | | 4(2x+3)=3(2x+10) |

Equations solver categories